Suture Selection: It does matter
Kristy Broaddus, DVM, MS, DACVS
VESC Richmond VA
Virginia Veterinary Conference 2016
Saturday February 27
10:10a-11:05a

How do you make the right choice?

Suture material: Outline
• Purpose of suture
• Ideal suture
• Suture size and strength
• Suture type
• Needle selection

Purpose of Suture
• To optimize wound healing:
 – maintain tissue apposition or ligate vessels
• Suture is a foreign body
• Strike a balance

Role of sutures in infection
• In a human study, the number of Staphylococcus required to cause subcutaneous infection decreased by 10,000-fold by adding a single piece of silk to wound

Kristy Broaddus
• Michigan State – DVM
• Auburn University – internship and surgery residency
• Oklahoma State University – faculty
• Richmond, Virginia – private practice specialty center
Short History of suture

- Ancient India used beetle mouths
- Plant fibers
 - Egyptians for mummies and living people
 - Irritating
 - Non-absorbable
- Cat gut
 - Galen of Pergamon 2nd century
 - Dissolvable
 - Unpredictable
 - Scarring noted

Ideal suture

- Adequate strength
- Easy to handle
- Minimal tissue reaction
- Resistant to infection
- Excellent knot security
- Dissolves when no longer needed
- Economical

Purpose of suture

- During the lag phase of healing, suture material provides the majority of wound strength
- Once the body takes over, it is no longer needed

Suture Selection

- Where is it going?
 - Tissue—strength required
- How long should it be there?
- Is tissue infected/contaminated?
- What kind of needle?

Suture size and strength

- "An ideal suture is one that will lose its tensile strength at a rate similar to that with which the tissue gains strength" (Fossum)
Suture size and strength

• Weak suture will break prematurely
• Overly strong suture will provide unnecessary presence resulting in a tissue reaction that may impede wound healing
• Match tissue strength with suture strength

Size and strength

Suture size correlates to suture strength

• USP pharmacopeia (USP):
 – small to large with diameter in inches
 – 12-0 to 7
 – Most common sizes are 0, 2-0, 3-0 and 4-0

Suture size and strength

• Strong tissues
 – Ligaments, tendons, fascia, skin
• Intermediate tissues
 – Stomach, intestines, bladder
• Weak tissues
 – Fat, liver, kidney, spleen

Suture Characteristics

• Flexibility
• Capillarity
• Relative knot security
• Tissue reaction
• Strength loss over time
• Ability to be absorbed
• Time to complete absorption

Suture material

Synthetic
 Absorbable
 Non-absorbable

Natural
 Absorbable
 Non-absorbable
Suture type

- Braided and non-braided
- Absorbable and Non-absorbable
- Natural and Synthetic

Braided v. Non-braided

- Braided
 - Greater strength and pliability
 - Knot less likely to slip
 - Less throws necessary for secure knot
 - Harbors infection
- Non-braided
 - Less pliable
 - More susceptible to crushing
 - More likely to slip
 - Requires more throws
 - Less prone to harboring infection

Suture Type

- Absorbable suture
 - Degradation and loss of strength within 60 days
- Non-absorbable suture
 - Retains tensile strength for 60 days or more after implantation

Natural versus Synthetic

- Natural – derived from plant or animal
 - Silk
 - Catgut
- Synthetic—polymers from man-made sources
 - Most commonly used sutures today

Natural suture

- Chromic gut
 - Submucosa of sheep intestine or bovine serosa
 - Formaldehyde treated collagen fibers
 - Stimulates significant foreign body reaction
 - "Virtually impossible to indicate exact designation of a consistent absorption time" (Covidien):
 - 3-7 days
 - Selection of chromic catgut suture for use in surgical procedures where adhesions are desired is unwarranted. (Rochat 1996, AJVR)
Natural Suture

- Silk
 - First non-absorbable suture material used
 - Multifilament
 - Loses strength in 6mos
 - Marked tissue reactivity
 - Avoid in infection
 - Good in vascular surgery: shunt, PDA, PRAA

Suture type

- Absorbable suture from strongest to weakest
 - Biosyn (glycomer)
 - Monocryl (poliglecaprone 25)
 - Maxon (polyglycolic acid)
 - PDS (polydioxanonone)
 - Vicryl (polyglactin 910)
 - Dexon (polyglycolide)
 - chromic gut

Synthetic absorbable

- Degraded by hydrolysis via esterase enzyme activity
- Significantly decreased inflammatory process
- Fairly constant rate of absorption
- Fairly constant loss of strength

Suture type

<table>
<thead>
<tr>
<th>Least reactive</th>
<th>Polidioxanone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyglyconate</td>
<td></td>
</tr>
<tr>
<td>Polyglactin 910</td>
<td></td>
</tr>
<tr>
<td>Polyglycolic acid</td>
<td></td>
</tr>
<tr>
<td>Poliglecaprone 25</td>
<td></td>
</tr>
<tr>
<td>Most reactive</td>
<td>Chromic gut</td>
</tr>
</tbody>
</table>

- Biosyn (Glycomer 631)
 - Synthetic, absorbable monofilament
 - Initially strongest
 - Lose of 60% by 21 days
 - Complete absorption by 90-100 days
 - Fascia, linea alba, joint capsule
Suture Type

- Maxon (polyglyconate)
 - Synthetic, absorbable monofilament
 - Loses 30% by 14 days
 - Loses 45% by 21 days
 - Totally absorbed 180 days
 - Good for linea

- PDS (polydioxanone):
 - Retains tensile strength the longest of all absorbable suture
 - 6 weeks to lose 50%
 - Linea closures, tendons, ligaments
 - Veterinary are no. 1 purchaser of PDS according to Ethicon
 - Minimum throws for secure knot is 4
 - Continuous 5/7

Polyglactin 910 (vicryl)

- Vicryl
 - Braided, synthetic suture
 - Soft for mouths
 - Vessel ligation and subcutaneous sutures
 - Avoid in urinary, biliary tract and infection
 - Good knot security
 - Loses about 1/3 of strength at 14 days
 - 2/3rd by 21 days
 - Fully absorbed by 90 days

Nonabsorbable synthetics

- Maintain full strength for > 60 days
 - Walled off or encapsulated by fibroblasts
- Stainless steel
- Polyester (mersilene, ethibond)
- Polymerized caprolactum (vetafil, braunamid)
- Nylon (ethilon)
- Polypropylene (prolene)
Synthetic non-absorbable

- Polypropylene (prolene)
 - Lower initial strength than nylon but retains strength longer
 - Awkward to handle
 - Least likely to potentiate infection in contaminated wounds
 - Non-thrombogenic
 - Uses
 - Skin sutures
 - Vascular surgery
 - Fascia, ligament, tendons, cavity closures in immune compromised

Synthetic Non-absorbable

- Nylon
 - Loses 30% within 2 years
 - Minimal tissue reaction
 - Good choice for skin

WHICH ONE DO YOU CHOOSE?

Suture Type

- Short-lived suture
 - Ideal for rapidly healing tissues
 - Bladder
 - Mucosa
 - Oral surgery
 - Intradermal sutures
 - Monocryl, Dexon

Linea closures

- Longer lasting absorbables
 - PDS, Maxon
 - 0-big dogs, 2.0 medium, 3.0 small dogs and cats
- Non-absorbable if delayed wound healing
 - Diabetes, cushings, hypothyroidism, chemotherapy
 - Polypropylene (prolene)
Thoracic surgery

- PDA, PRAA—silk
- Lung lobectomy – PDS, maxon
- Circumcostal closure—PDS or polypropylene
- Muscle layer—PDS
- Subcutaneous/intradermal—monocryl
- +/- Skin sutures (nylon, polypropylene) or staples

Gastrointestinal surgery

- Absorbable suture that retains strength through 14 days is recommended
 - PDS, Maxon, etc
 - 3.0, 4.0
 - Monocryl?
- Enterotomies
- Gastrotomies
- Gastropexies
- Resection and anastomoses

Subcutaneous and intradermal tissue

- Weak tissue does not need strong suture
- Quick absorption suture
 - Monocryl, vicryl, dixon
 - 3.0/4.0
 - Continuous pattern

Oral surgery

- Absorbable
- Braided soft sutures
 - Vicryl, 3.0
- Short lived sutures
 - Monocryl, 3.0

Antibiotic impregnated suture?

- Effect of using triclosan-impregnated suture for incisional closure on surgical site infection and inflammation following tibial plateau leveling osteotomy in dogs
- Sean W. Etter et al 2013 JAVMA
NEEDLE SELECTION

Needle Selection

• Ideal needle
 – High quality stainless steel
 – Small diameter but strong
 – Stable in needle holder
 – Cause minimal trauma
 – Rigid
 – Corrosion resistant

Swaged v. Eyed

• Swaged
 – Suture and needle are approximately same size
 – Ideal
 – Minimal trauma
 – Saves times
 – More expensive

Swaged v. Eyed

• Eyed:
 – Feed suture through eye
 – More traumatic
 – Two strands must pass through suture
 – Time consuming

Suture Needle Selection

• Most needles are curved
• Typical sizes include
 – ¼, 3/8, ½, 5/8
• 3/8 has the “friendliest” curve
• Cutting v. taper

Taper Needle

• Taper needle
 – Round, less traumatic
 – Less likely to cut tissue
 – Good for delicate tissue such as viscera, connective tissue, vessels
 – Laryngeal tie-back surgery
• Good for most things
Cutting Needle

- **Purpose**
 - Reduce trauma getting through tough tissues
 - Skin sutures
 - Intradermal sutures

Suture common sense

- Use least amount of suture material necessary to accomplish successful healing of tissue

Suture: Common sense

- It is better to increase number of sutures than to increase size of suture material
 - Each added suture decreases the stress on the rest
- Proper spacing
 - to avoid tissue necrosis or dehiscence

Suture: Common sense

- Placing a knot weakens suture material
 - The knot is the weakest part of the suture loop
 - #1 reason for dehiscence improperly tied knots
 - Knots (foreign material) should be minimized
Suture Common Sense

• When performing a continuous suture pattern, the ending knot requires more throws because loop makes knot weaker
• Larger sutures sizes are less secure and require more throws, more foreign material

Examples

• Skin wound with potential for contamination
 – Highly dissolvable in subcutaneous region
 – Nonabsorbable in the skin
 • Remove when appropriate

Case examples

• Diabetic, Cushingoid 10 yr bishon frisee OHE (25lbs)
 – Linea – 2.0/3.0 polypropylene
 – Subcutaneous region—4.0 monocryl
 – Skin—3.0 nylon

Case examples

• Gastropexy in 90lb lean M german shepherd
 – Incisional gastropexy: 3.0 PDS
 – Linea: 0 PDS
 – SQ/intradermal: 3.0 monocryl

Case Examples

• Cystotomy in diabetic 13 yo FS toy poodle 9lbs
 – Cystotomy: 3.0 PDS (non diabetic—monocryl)
 – Linea: 3.0 polypropylene (non DM-3.0 pds)
 – SQ: 4.0 monocryl
 – Skin: 3.0 nylon
Conclusions

- Match suture to tissue
- Remember suture material is a foreign material
- When in doubt use a taper needle
- Less is more

Questions?