Infectious Respiratory Disease in Horses

Age of onset: bacterial pathogens

YOUNG
- Perinatal
 - < 1 month
 - Gram negatives
 - Association with FPT
- 1-6 months
 - *R. equi* and *S. zooepidemicus*
 - Complete evaluation with TTW / culture / sensitivity testing

ADULT
- Long distance transport
- Following viral challenge
- Primary pathogen
 - *S. equi*
 - Strangles

Equine Viral Respiratory Disease

- Individual infection
- Co-morbid condition
- Equine influenza virus
- Equine herpesviruses
 - EHV-1
 - EHV-4
 - EHV-2
 - EHV-5
- Equine adenovirus
- Equine rhinovirus B
- Equine rhinovirus A

Pusterla et al, Veterinary Record March 23, 2013
Foal pneumonia

- < 1 month
 - Sepsis
 - FPT
 - Hematogenous
 - Ascending via omphalophlebitis
 - G-neg > G pos
 - E. coli, Klebsiella, Actinobacillus, Salmonella, Strep.
 - Aspiration of meconium inactivates surfactant
 - Inflammation: TNF-alpha, interleukin-beta, IL-8
 - Edema and vasoconstriction result
 - Decreased type II pneumocyte function = reduced surfactant
 - Viral: EHV-1/4, EVA, adenovirus (immunodeficiency), EIV A

Foal Pneumonia

- 1 month to 6 months
- *S. equi* zooepidemicus and *R. equi*
- Anaerobes uncommon
- Respiratory viruses are uncommonly a primary invader in nursing foals
- Adenoviruses (EAdVs) have been investigated and are ubiquitous along with EHV-2.
 - Immunocompromise (Arabian foals / SCID)
 - EHV-2 may be a predisposing cause of *R. equi*

Interstitial pneumonia

- Bronchointerstitial pneumonia
- Also termed:
 - Acute lung injury
 - Acute respiratory distress syndrome
- Foals 1-6 months of age
- Respiratory distress
- Tachypnea
- Fever
- High mortality
Loss of architecture

[Image of horse]

[Image of tissue sample]
• Typically an individual case
• Severe respiratory distress
• Hypoxemia, hypoxemia, respiratory acidosis
Acute lung injury

- Severe pulmonary trauma caused by physical or chemical injury or by exaggerated pulmonary immune response.
- Acute onset, bilateral pulmonary infiltrates.
- A ratio of pulmonary arterial oxygen pressure (Pa02) to fraction of inspired oxygen (Fi02) < 300 for ALI (less severe) and < 200 for ARDS.
- No consensus for veterinary medicine.

Diagnosis

- Rule out infectious disease
- Severe *R. equi* pneumonia looks very similar
- Respiratory distress
- Cyanosis
- Hypoxemia
- Leukocytosis with hyperfibrinogenemia

Treatment

- Mechanical ventilation is used in human medicine.
- Other than equine neonates, nasal insufflation of humidified oxygen will be the primary means of therapy.
 - Unilateral, bilateral or tracheal.
- Antiinflammatory therapy
 - CCS
 - Dexamethasone (0.05-0.2 mg/kg daily – BID)
 - Methylprednisolone (Solu-Medrol) 2 mg/kg IV as a loading dose
 - Then 2 mg/kg IV daily, divided into 4 doses; or 0.5 mg/kg IV QID.
Clinical Management

• Bronchoconstriction is not significant
 – Pulmonary edema clearance is mediated by Beta 2 receptor activation, albuterol or clenbuterol may provide benefit for this reason.
 – Bronchodilation may potentiate V/Q mismatch, deterioration will indicate that therapy should be modified / discontinued.
• Judicious use of IV fluids may be indicated, over hydration should be avoided.
• Hypovolemia reduces oxygen delivery (reduced CO) CVP should be monitored to determine fluid needs.
• Nutrition should also be carefully addressed.

• Free radical scavengers
• Vasodilator therapy
• Overall prognosis is guarded: 60-69%
• Survival is associated with excellent pulmonary function.

Rhodococcus equi (R. equi)

• Gram positive
• Facultative intracellular pathogen
• This bacterium is present on (nearly) all farms
• Disease in endemic on some, not all farms
 – High morb / mort when present
 – 3 weeks to 5 months of age
VapA = virulence

- Sequencing of large plasmid in 2 isolates
- 3 functional regions
 - 2 of the 3 regions
 - Plasmid replication stability
 - Segregation
 - The 3rd region of the plasmid = pathogenicity island
 - 23 kb
 - Certain genes that encode for VAP proteins
- Eight virulence associated proteins (VAP)
 - VapA and VapC to VapI
 - VapA and VapC are non-functional
 - Signal sequence indicating extracellular proteins
 - VapA is surface expressed and temperature regulated
 - 34-41°C
 - VapA alone is necessary, but not sufficient for pathogenicity
 - VapC, D and E are secreted and temperature regulated
• Chronic bronchopneumonia
• Extensive abscess formation
• Slow progression
• Marked pulmonary reserve
• Early diagnosis can be challenging
• Early
 – Respiratory distress with exercise
• Chronic
 – Reduced appetite, fever, labored breathing
Diagnosis

• TTA culture positive
 – Presence of VapA gene = VapA
 – Amplification of gene via PCR
• PCR must be in conjunction with culture (not a replacement for culture).
 – Identify other pathogens
 – Determine antimicrobial susceptibility
• TT/BA sample from:
 – Foal with clinical evidence of pneumonia
 – Cytology from TBA supports sepsis
 – Radiographs / ultrasound that support R. equi
Extrapulmonary disorders

- Ex = osteomyelitis, abdominal abscess
 - Intestinal lesions in ~ 50%
- Definitive through culture + PCR (vapA)
- Suggestive due to dx of R. equi and inaccessible site in a TBA R. equi (vapA) positive individual
 - Uveitis or polyarthritis (30%)
 - Synovitis = non-spetic, mononuclear pleocytosis,
- GIT is problematic
 - Culture positive (feces) is not confirmatory for R. equi
 - Few (4%) will only have GIT dz
• Rare EPD:
 – Panophthalmitis
 – GP empyema
 – Sinusitis
 – Pericarditis
 – Hepatic
 – Intracranial

Evidence behind culture of TBA

• Overall 69% sensitivity for culture
• Presence of organism is possible from environmental contamination (aerosol)
 – 35% on one farm with endemic disease (Ardans AAEP Proc. 1986)
• Other pathogens can also be identified

Treatment

• Macrolide with rifampin
 – In vitro activity, PK data, retrospective evidence (moderate evidence)
• Evidence to support resistant strains provides a more guarded prognosis (Giguere JAVMA 2010)
• Clarithromycin > azithromycin > erythromycin
 – Clarithromycin-rif better for severely affected foals
 – NO random assignment for this study
• Erythromycin
 – Less bioavailable
 – Fasted (x 4) to enhance absorption
• Rif decreases ML absorption?
 – Suggestion (with evidence) by Peters et al (2011) and Venner (2010). Until this evidence is present to
demonstrate that ML w/out rif is as efficacious as ML + rif
the recommendation of combination therapy remains
canstant (Giguere 2013).

Potential complicating factors

• Diarrhea
 – Generally self limiting in foals
• Hyperthermia and tachypnea
 – Definitively demonstrated w/ erythro, suggested
with newer generation agents
• Diarrhea in mares

Foals infected with resistant strains

• TX and FL, 4% were resistant
• When present 7X greater chance of death
• Misclassification of resistance is possible
• Treat based on susceptibility
 – Doxycycline 10 mg/kg PO BID + rif
 – Chloramphenicol 50 mg/kg PO QID (human
 health)
 – TMS 30 mg/kg PO BID-TID + rif
Ancillary therapy

- Humidified oxygen
- Immune-mediated polysynovitis, resolves with effective treatment of primary disorder
- Local septic arthritis / osteomyelitis specific treatment is required
- Abdominal abscess formation carries a poor prognosis

Foals with subclinical disease treated with ML+rif compared with placebo treatment did not have an increased recovery rate, suggesting that spontaneous resolution is likely in subclinically affected foals, regardless of treatment protocol

Hyperimmune Plasma

- VapA and vapC hyperimmunized individuals similar to R. equi.
- Should not use plasma that is not R. equi
- HIP licensed plasma is recommended over plasma obtained from R. equi immunized horses.
 - Potency, purity and safety
 - 1 L not later than 48 h
 - Commonly, 2nd dose 2-4 weeks of age
 - With surveillance
Strangles

S. equi

- *Streptococcus equi* subsp. *equi* (Lancefield group C)
- Primary infection of the oropharynx
- Local and regional LN
- Progression to fever, lymphadenopathy, purulent nasal discharge and abscess formation.
• Abscess drainage generally occurs to the external skin surface or through the auditory canal (guttural pouch)
• Tracheal compression can be severe and life-threatening
• Submandibular / retropharyngeal most common
• Others: (tracheo)bronchial ln, abdominal / mesenteric ln, and brain.

• Bacterial survival in the environment is limited
• An important reservoir for the bacteria is the carrier status
• Serious complications develop in ~ 20% of cases with case fatality rate ~ 8%.
 − S. equi consensus statement 2005 Sweeney et al.

• S. equi gains entrance through the mouth and/or nose
• Cells of the lingual and palatine tonsils and follicular epithelium
• No colonization before penetration
• Within hours, hard to detect on mucosal surface, but can be found within epithelial and subepithelial cells
• Translocation to regional lymph nodes
• Regional localization of PMNs to site
• Abscess in 3 to 5 days once S. equi enters lymph node.
• PMNs cannot kill bacteria
 – Hyaluronic acid capsule
 – SeM has antiphagocytic properties
 – Mac protein
 – Others

• Bacteria can be disseminated elsewhere
 – Hematogenous
 – Lymphatic
• Bastard / metastatic strangles

Disease Transmission
• Nasal shedding 2-3 days post initial fever
• Shedding can continue 2-3 weeks
• Most (75%) horses have long-lasting immunity post infection
• Older horses typically have more mild disease d/t residual (memory) immunity.
• Still shed and can serve as risk to susceptible individuals.
• Foals that ingest colostrum from immune mares are considered protected until ~ weaning.
Transmission

- Direct
- Indirect
- Transmission from healthy appearing horses
 - Incubating disease
 - Recovering, but still shedding
 - Prolonged shedding
 - Chondroid

Survival in Environment

- Consider all factors.
- Current evidence has demonstrated may approach 30 days.
- Shorter with season and direct sunlight.
- Winter provides survival advantage in UK.
 - Weese et al CVJ 2009
 - Durham et al EVJ 2018

Diagnosis: GP secretions via endoscopy

- Culture
 - Nasal exudate
 - Purulent material
 - Nasal swab
 - May be negative early
 - Sens.
- PCR
 - SeM gene encoding antiphagocytic M protein
 - Dead or alive
 - PCR inhibitors
 - Should accompany culture
- Serology
 - Ab production against SeM
Vaccination

- Extract vaccine
 - 7-10 days for immune response.
 - Annual booster.
 - Do not vaccinate if infected within previous year.
 - Do no vaccinate in face of outbreak.

- Modified live vaccine
 - Induction of mucosal immunity.
 - Live, attenuated.
 - Healthy, afebrile horses.
 - 2 doses 2-3 weeks apart.
 - Do not administer during an outbreak.
 - Do not administer to < 6 month old horses.

Control of Outbreak

- Stop movement of horses
- Separate infected / sick from healthy.
- Carriers are best detected with GP (endoscopy) sampling.
 - qPCR testing
- Negative on consecutive tests = clean.

- Source? Examine healthy horses that are positive on culture / PCR, perform GP endoscopy.
- Strict isolation from healthy and infected / sick.
- Temp. all, at first fever penicillin x 5 days.
 - No immune induction, still susceptible.

Adapted from Boyle et al ACVIM Revised consensus 2018
Clinical Management

- Facilitate drainage
- If needed, surgical drainage.
- Avoid antibiotics unless complicated case.

- Complicated case:
 - Persistent fever
 - Tracheostomy
 - Metastatic abscess
 - PH and CCS therapy

 - Penicillin is drug of choice.
 - Other options.

Complications

- Approx. 20% cases
- Metastatic lesions
 - Pulmonary
 - Peritoneal
 - Renal
 - CNS
- Immune mediated disease
- Others
 - Glomerulonephritis

- Persistent infection within GP
 - Chronic infection
 - Additional sites of dissemination
 - Myocarditis
 - Endocarditis
 - Panophthalmitis
 - Periribital abscess
 - Ulcerative keratitis
 - Paravertebral abscess
 - Septic arthritis
 - Tenosynovitis
Immune Mediated Disease

- Purpura hemorrhagica
- Aseptic necrotizing vasculitis
- Edema and petechiation
- Immune complex disease among blood vessels
 - High antibody titer at the time of exposure
 - Natural
 - Vaccine
- Muscle involvement
 - Muscle infarction
 - Coagulative necrosis of muscle with infarctions
 - Myositis
 - Rhabdomyolysis with progressive atrophy
 - Immune mediated
 - QH predilection
- Muscle involvement

Other Complications

- Myocarditis
- Glomerulonephritis
- Agalactia in pregnant brood mares, not associated with mammary infection.

Bacterial Pneumonia

- Viral
- Secondary invaders
- Long distance
- Stress
- Co-mingling

Pleuropneumonia

- Pyrexia
- Lethargy
- Exercise intolerance
- Long distance transport and clinical signs
- Abnormal auscultation, particularly with disease progression.
- To rebreathe or not rebreathe?
 - Increased inhaled CO2
 - Deeper breaths
Clinical Management of Pleuropneumonia

- Physical examination
- Ultrasound
- Thoracocentesis
- Thoracic radiographs
- Transtracheal wash
- Antimicrobial selection
- Hematology
- Long term plan?
Pathogens of Concern

- *Streptococcus equi var zooepidemicus*
- *Pasturella* spp.
- *Actinobacillus* spp.
- *E. coli*
- *Klebsiella pneumoniae*
- Anaerobes
 - *Bacteroides* spp.
 - *Clostridium* spp.

Antimicrobial Selection
Continued Therapeutics

- Clinical management for infectious disease
- Broad spectrum antimicrobials 2-4 weeks
- Removal of focus of sepsis is key
- Rarely prolonged management
 - Recurrence of fluid
 - Persistent sepsis
- Overall favorable prognosis following thoracotomy
 - Survival and performance