The Ins & Outs of Tubes & Drains

DAYNA MIDDLESTEAD, DVM, RESIDENT IN SMALL ANIMAL SURGERY

2018 Potomac Regional Veterinary Conference
Saturday, October 27th

OVERVIEW

• Feeding Tubes
 – Indications & Contraindications
 – Advantages & Disadvantages
 – Materials & Techniques
 – Complications
 – How they are used
 – Maintenance/Care

• Drains
 – Indications
 – Benefits & Risks
 – Mechanisms of Drainage
 – How they are used and managed

Feeding Tubes

Why a Feeding Tube????

• Provide nutritional support
 – Prevent complications associated with disease
 – Facilitate recovery
 – Avoid complications with various therapies/surgeries

• Patient factors assisting in tube selection:
 – Location of disease
 – Length of time nutritional support needed
 – Level of patient cooperation/owner compliance
 – Risk of general anesthesia
Feeding Tubes

- Orogastric
- Nasoenteric
- Pharyngostomy
- Esophagostomy
- Gastrostomy
- Enterostomy

Orogastric Tubes

- Indications:
 - Commonly used in orphaned neonates
- Material/Technique:
 - Uses a red rubber or polyvinyl chloride tube
 - 8- to 24-Fr
 - Tube is passed through the oral cavity until the tip is in the distal esophagus or stomach
 - For proper length, the distance can be measured from the level of the last rib to the nose
- Complications
 - Aspiration pneumonia
 - Laryngeal Pharyngeal trauma
 - Not appropriate, if nutritional support is needed for more than 2 days

Nasoenteric Feeding Tubes

- Nasoenteric or Nasogastric
- Indications:
 - Debilitated patients
 - Need for short-term nutritional support
- Contraindications:
 - Patients with abnormal gag reflex, esophageal dysfunction, coma, or other co-morbidities predisposing the patient to aspiration pneumonia
 - Vomiting
- Advantages:
 - Does not require general anesthesia and rarely sedation
 - Can be performed by licensed veterinary technician
- Disadvantages:
 - Catheters have a small internal diameter
 - Commercial liquid diet rather than blended pet food
- Complications:
 - Minor, more common
 - Epistaxis, dacryocystitis, rhinitis, sneezing premature tube removal
 - Major, rare
 - Aspiration pneumonia

Nasoenteric

- Materials:
 - Small diameter (polyurethane or silicone elastomer tube)
 - 5Fr for cats and dogs <15kg
 - 8 Fr for dogs >15kg
 - Local anesthetic
 - Proparacaine 0.5% or Lidocaine 2%
 - Suture material
 - Non-absorbable monofilament (Nylon or Prolene)
 - 2-0 or 3-0
Nasoenteric • Technique:
- Nasoesophageal: Distance to the midthoracic esophagus is determined by measuring from the patient's nose to the 7th or 8th rib.
- Nasogastric: Distance to the stomach is determined by measuring from the patient's nose to the last rib.

Nasoenteric • Methods to confirm placement of the nasogastric tube:
- Negative pressure
- Inject saline and see if a cough is elicited
- Inject air and auscultate for borborygmus
- Connect tube to a capnograph
- Check the pH of the aspirated fluid
- Lateral thoracic radiograph

Pharyngostomy Tubes • Indications:
- Patients with conditions affecting the oral cavity (infection, neoplasia, trauma or surgical wound)

Pharyngostomy Tubes • Contraindications:
- Patients with pharyngeal trauma, esophageal disorders, history of vomiting or regurgitation

Pharyngostomy Tubes • Disadvantages:
- Patients, particularly cats, may be unwilling to eat voluntarily with tube in place
- Require general anesthesia

Pharyngostomy Tubes • Material/Techniques:
- Red rubber and silicone tubing
- Tube size is dependent on the patient size
 - 8- to 14- Fr for cats and small dogs
 - 12- to 28- Fr for medium and large dogs
- Distance to the midthoracic esophagus is measured so that the tip of the tube is between the 7th & 8th rib
- Does require general anesthesia
- Radiographs to confirm placement

Pharyngostomy Tubes • Complications:
- Interference with the epiglottis if the tube is placed too cranial, tube is too large or the tube is kinked
 - Results in coughing, dyspnea, aspiration pneumonia
- Regurgitation, vomiting, local infection, premature tube displacement
Esophagostomy Tubes

- **Indications:**
 - Patients that require long-term nutritional support
 - Patients with disease or trauma of the oral cavity or pharynx

- **Contraindications:**
 - Patients with esophageal disorders (esophageal strictures, megaesophagus, esophagitis, esophageal neoplasia) or following esophageal surgery

- **Advantages:**
 - Tubes will allow blended diets, along with liquid
 - Can be removed at any time

Materials/Techniques:
- 14Fr or larger diameter red rubber, polyvinyl chloride, or polyurethane tube
- Manual (unassisted) transesophageal advancement, percutaneous tube esophagostomy (needle-assisted or tube-assisted), Eld percutaneous feeding tube applicator
- Radiographs to confirm placement

Complications:
- **Minor:**
 - Stomal infection or abscessation, tube kinking, tube obstruction, tube displacement secondary to vomiting
- **Major:**
 - Leakage, hemorrhage

Gastrostomy Tubes

- **Indications:**
 - Patients in which the oral cavity, pharynx, and esophagus must be bypassed, either due to injury, disease, obstruction, or surgery

- **Contraindications:**
 - Patients with primary gastric disease or persistent vomiting; dysfunctional esophagus; patients with abnormal motility

- **Advantages:**
 - Can be left in place for months
 - Permits administration of blended food, along with liquids

- **Disadvantages:**
 - Must be left in until stoma formed (~7-10 days)

Materials:
- 14- to 24-Fr
- Mushroom-tipped catheters or Foley catheters

Methods:
- Surgical placement
- Percutaneous Endoscopic Gastrostomy (PEG) Tube Placement
- Nonendoscopic Percutaneous Tube Placement
- Low-Profile Gastrostomy Tubes

Complications:
- Gastrointestinal signs (vomiting, regurgitation, diarrhea, gastroesophageal reflux), aspiration pneumonia, leakage resulting in peritonitis or peristomal inflammation or infection
- If not performed surgically: inadvertent perforation of abdominal organs (spleen), subcutaneous emphysema, pneumoperitoneum, pneumomediastinum, long tube perforation
- Tube obstruction
Enterostomy Tubes

- **Indications:**
 - Malnourished animals with a hypermetabolic condition (sepsis, pancreatitis), inadequate oral intake
 - If the stomach and/or duodenum need to be bypassed
 - Useful in patients at high risk of aspiration pneumonia (recumbent, comatose, absent gag reflex, esophageal motility disorder)

- **Contraindications:**
 - Intestinal obstructions distal to the enterostomy site

- **Advantages:**
 - Can start feedings within hours of surgery
 - Can be used for weeks to months
 - Less risk of gastroesophageal reflux
 - Decreased risk of aspiration pneumonia

- **Disadvantages:**
 - Required to stay in for ~5-7 days to form stoma

Material:
- Polyurethane, silicone, red rubber, polypropylene, and polyethylene
- 5 Fr in cats and dogs <15kg
- 8 Fr in dogs >15kg

Techniques:
- Can be placed during exploratory laparotomy, laparoscopically assisted or advanced through a gastrostomy tube (Gastrojejunostomy aka J thru G)
- Placed in the duodenum or proximally jejunum

Holstering the Tubes

- **Vetwrap Bandage**
- **Kitty or Kanine Kollars®**
- **Stockinette**
- **Vest or T-Shirt**

Vetwrap® Bandage

- **Neck wrap**
 - Nasoenteric, Esophagostomy, Pharyngostomy

- **Changed daily**
- **LABEL, LABEL, LABEL**

- **Application**
 - Telfa pad with triple antibiotic ointment
 - Esophagostomy tube
 - Cast padding
 - +/- Cling wrap
 - Vet Wrap®
Kitty or Kanine Kollar ®

- Esophagostomy, Pharyngostomy tubes
- Available in an array of sizes and colors
- Protector pads provided
- Machine wash

Stockinette

- Gastrostomy or Enteroostomy tubes
- Can be fed through hole in stockinette or secured with document clip
- Does NOT replace the need for E-collar

Putting the Tubes to Use

- What is the patient's nutritional resting energy requirement (RER)?
 - Patients <2kg
 - RER (kcal/day) = 70 x (BWkg) 0.75
 - Patients >2kg
 - RER (kcal/day) = 30 x (BWkg) 0.75 + 70
- What is the patient's nutritional daily energy requirement (DER)?
 - DER = RER x factor of life stage/disease
 - Life factor examples:
 - Weight loss = 1.0
 - Lactation = 4.0 to 8.0
 - Growth = 1.6 to 2.5
 - Altered adult = 1.4
 - Intact adult = 1.6

Vests or T-Shirts

- Gastrostomy or Enterostomy tubes
- Can be secured with document clip or just “tucked” into vest
- Does NOT replace need for E-collar
- Products available:
 - Surgi-Sox with DogLeggs
 - MPS Shirts
 - Standard human shirt
Food selection

![Food selection](image)

<table>
<thead>
<tr>
<th>Food</th>
<th>Amount</th>
<th>Water Added</th>
<th>Kcal/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hill's A/D</td>
<td>1 can</td>
<td>None</td>
<td>1.2</td>
</tr>
<tr>
<td>Hill's C/D</td>
<td>½ can</td>
<td>1 ¼ cup**</td>
<td>0.62</td>
</tr>
<tr>
<td>Hill's K/D</td>
<td>½ can</td>
<td>1 ¼ cup**</td>
<td>0.9</td>
</tr>
<tr>
<td>Hill's I/D</td>
<td>½ can</td>
<td>1 ¼ cup**</td>
<td>0.62</td>
</tr>
<tr>
<td>Clinicare</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

* 1 can is equal to 156mL
** 1 ¼ cup is equal to 284mL

CRI vs Intermittent Boluses??

Intermittent and Continuous Enteral Nutrition in Critically Ill Dogs: A Prospective Randomized Trial

M. Holahan, S. Abose, J. Hauptman, C. Koenigsruegert, and A. Brown

- Michigan State University
- Journal of Veterinary Internal Medicine 2010
- **Objectives:**
 - Daily caloric goals for critically ill dogs receiving CRI vs Bolus feedings (PPND*)
 - Correlations between GRVs and frequency of vomiting and/or regurgitation
- **Methods:**
 - Feedings administered via nasoesophageal or nasogastric feeding tube
 - GRV** measured via feeding tube
 - Group C – constant rate infusion group
 - Group I – intermittent bolus group
- **Results:**
 - The PPND was significantly less (P value < .05) in Group C compared with Group I
 - There was no significant difference in GRV between the two groups

Example:

- 10 year old FS domestic short hair
- Current weight= 5kg
- History: 3 weeks waxing and waning appetite, intermittent vomiting for 1 year, weight loss over past year (was 8kg)
- Abdominal ultrasound revealed thickened small intestines and lymphadenopathy
- Surgical gastrointestinal and mesenteric biopsies collected- histopathology consistent with Small Cell Lymphoma
- Gastrostomy tube placed at the time of surgery
- RER (kcal/day)= 30 (5kg) + 70
 - 220 kcal/day
- DER= RER x 1.0 (weight loss)
 - 220 x 1.0 = 220 kcal/day
- Selected food= Hill's A/D
 - 1 can with no added water = 1.2 kcal/mL
 - 220 kcal/day / 1.2 kcal/mL = 183mL/day
- CRI
 - Day 1: 1/3 DER= 61mL/day
 - 2.5mL/hr
 - Day 2: 2/3 DER= 122 mL/day
 - 5mL/hr
 - Day 3: Full DER= 183mL/day
 - 7.6mL/hr
- Intermittent Boluses: Split into four feedings
 - Day 1: 1/3 DER
 - 15mL every 6 hours
 - Day 2: 2/3 DER
 - 30mL every 6 hours
 - Day 3: Full DER
 - 45mL every 6 hours

Daily Maintenance

- Stoma care
 - Changing dressing/coverage
 - Cleaning stoma
 - Chlorhexidine wipes
 - Triple Antibiotic Ointment
- CRI Feeding supplies
 - Change Bag and extension set daily
 - Change nutritional supplementation/liquid every 6 hours
Tube Troubleshooting

- Clogged tube???
 - Endoscopic forceps
 - Stylet
 - Carbonated liquid aka Soda

Drains

- Indications:
 - Increased dead space (large mass removal, mastectomy, amputation), increased fluid accumulation

- Benefits:
 - Removal of fluids
 - Reduction in pressure
 - Evacuation of inflammatory mediators, bacteria, unhealthy tissue and foreign material
 - Maintaining contact between tissue layers

- Passive vs Active

PASSIVE DRAINS

- "Open" draining system
- Rely on gravity, body movements, pressure differentials and overflow
- Penrose or Sump drains

- Disadvantages:
 - Risk for ascending infection
 - Cannot convert to active drain
 - Difficult to quantify and microscopically exam fluid (absorbed into bandage, skin contamination, etc)

- Maintain clean exit site

Active Drains

- "Closed" drainage system

- Advantages
 - Measuring of fluid volume
 - Microscopic examination of fluid
 - Lower incidence of ascending infection
 - Allows for greater apposition of skin to wound bed

- Complications
 - Blockage, damaged tube, pre-mature removal, pressure necrosis, etc
 - Blockage → flushing vs aspirating

- Continuous or intermittent suction
 - Manual activated vacuum drainage system
 - "Grenades" → most reliable
 - Maintains consistent suction
 - Relied on Sprouse??
 - Vacutainer blood tubes
 - Wall vacuum drainage system
Holstering the Active Drains
- Stockinette
- Vests or T-Shirts
- VetWrap ® bandage

Stockinette
- Reservoir attached via document clip, carabiner clip or tucked underneath

Vests or T-Shirts
- MPS and Halter Monitor vests have pockets
- Great for holding reservoir
- T-Shirts and DogLegg vests
- Secure with document clip

Vet Wrap ® Bandage
- Active Drains
 - Vacutainer drains!
 - Changed daily if over wound
 - Changed every other day if just for support
 - LABEL DRAINS
- Passive Drains too!
 - Cover drains
 - Collect exudate
 - Changed daily
 - Label location of drain
References

- Tobias KM, Johnston SA. Veterinary Surgery Small Animal. Edison 1, Volume II