Practical Approach to Arrhythmias

Julia Shih, VMD, DACVIM (Cardiology)

October 27, 2018

Outline

- Conduction System
- ECG Acquisition
- ECG Interpretation
 - Heart rate
 - Rhythm
- Arrhythmias
 - Bradyarrhythmias
 - Tachyarrhythmias
 - Supraventricular Tachyarrhythmias
 - Ventricular Tachyarrhythmias

Cardiac Conduction System

Depolarization & ECG

Electrocardiography
ECG Acquisition

Electrocardiography

ECG Interpretation:
Calculating the Heart Rate

25mm/s
10 small boxes 1500 / 10 = 150 bpm
At 25mm/s: 1500 / number of small boxes = Instantaneous heart rate
At 50mm/s: 3000 / number of small boxes = Instantaneous heart rate

ECG Interpretation:
Calculating the Heart Rate

10 QRS complexes within 6 seconds represents 100 bpm (10 cycles x 10)

ECG Interpretation:
Calculating the Heart Rate

ECG Interpretation:
Calculating the Heart Rate

10 small boxes
1500 / 10 = 150 bpm
ECG Interpretation: Calculating the Heart Rate

- **Paper Speed at 50 mm/s**
 - Average HR:
 - Count number of complexes in 3 second time frame and multiply by 20
 - Instantaneous HR:
 - Count number of small boxes from one R wave to the next R wave and divide into 3000

- **Paper Speed at 25 mm/s**
 - Average HR:
 - Count number of complexes in a 6 second time frame and multiply by 10
 - Instantaneous HR:
 - Count number of small boxes from one R wave to the next R wave and divide into 1500

ECG Interpretation: Rhythm Assessment

- Evaluate the heart rhythm
 - Regular, Regularly irregular, or Irregularly irregular
- What is the relationship between the P and QRS?
 - Is there a P-wave for every QRS complex?
 - Is there a QRS complex for every P-wave?
 - Are the P waves and QRS complexes consistently related?
- Are the P waves and QRS complexes the same?
 - Where are they originating from?
 - Supraventricular or Ventricular

ECG Interpretation: Rhythm Assessment

- Sinus Rhythm
- Sinus Arrhythmia

ECG Interpretation: Rhythm Assessment

- 2:1 Atrioventricular Block
- Ventricular Bigeminy

Common Arrhythmias

- **Bradyarrhythmias**
 - Sinus bradycardia
 - Atrioventricular block
 - Sick sinus syndrome
 - Atrial standstill
- **Tachyarrhythmias**
 - Supraventricular tachycardia
 - Atrial fibrillation
 - Ventricular tachycardia
Bradyarrhythmias

Causes

• Sinus bradycardia
 – Primary: Sinus node disease (Sick sinus syndrome)
 – Secondary: Increased vagal tone, hypothyroidism, hyperkalemia, hypoadrenocorticism

• Sinus Arrest/Sick Sinus Syndrome
 – Primary: Sinus node disease (Sick sinus syndrome)
 – Secondary: Increased vagal tone, hypothyroidism, hyperkalemia, hypoadrenocorticism

• Atrioventricular block
 – Primary: AV node disease
 – Secondary: Increased vagal tone

• Atrial Standstill
 – Primary: Atrial myocardial disease
 – Secondary: Hyperkalemia

Bradyarrhythmias - Vagotonia

Increased Vagal Tone

• Gastrointestinal/Abdominal disease
• Respiratory disease
• CNS disease
• Ophthalmologic disease
• Vagal nerve stimulation

Bradyarrhythmias

Sinus Bradycardia

• Primary Causes
 – Sick Sinus Syndrome

• Secondary Causes
 – High vagal tone (Respiratory, GI, CNS disease)
 – Hypothermia, hypoglycemia
 – Hypothyroidism
 – Electrolyte abnormalities
 – Drugs

Bradyarrhythmias

Sick Sinus Syndrome

• Middle-aged to older females
• Breed predisposition
 – Miniature Schnauzer
 – Cocker Spaniel
 – West Highland White Terrier
 – Pug
 – Bull Terrier
• Sinus node dysfunction
 – Sinus arrest
 – Escape beats
 – Brady/tachyarrhythmias

Bradyarrhythmias

Atrioventricular Block

• Atrioventricular Block
 – Impaired conduction from the atria to the ventricles

 • 1st Degree AV Block – Good prognosis
 • 2nd Degree AV Block
 – Low Grade: Good prognosis
 – High Grade: Guarded prognosis
 • 3rd Degree AV Block
 – Guarded prognosis
Bradyarrhythmias
Atrioventricular Block

1st Degree AV Block
- Prolonged PR Interval (Normal < 0.14 seconds)
- No dropped beats
- Good prognosis

2nd Degree AV Block
- Unconducted P waves
- Low Grade – Conduction ratio of 2:1 or better
- High Grade – Conduction ratio of 3:1 or worse
- Guarded prognosis – Risk of sudden death

Atropine Response Test
- Atropine 0.04mg/kg IV
- Repeat ECG in 15 minutes
- OR
- Atropine 0.04mg/kg SQ
- Repeat ECG in 30 minutes
- Normal response: Increase HR > 140 bpm

3rd Degree AV Block
- Atrioventricular dissociation
- Guarded prognosis – Risk of sudden death
- Chronically may present with congestive heart failure

Treatment - Medical
- Treatment of Secondary Cause
- Sympathomimetics
 - Theophylline 5-10 mg/kg BID-TID
 - Terbutaline 0.2 mg/kg BID-TID
- Vagolytics
 - Hyoscyamine 0.003-0.006mg/kg BID-TID
 - Propantheline Bromide: 7.5 – 30mg BID-TID
 - < 5 kg: 7.5mg, < 12 kg 15mg, 12 kg+: 30mg q8
Bradyarrhythmias
Treatment - Pacemaker

- Indications
 - High grade 2nd Degree AVB
 - 3rd Degree AVB
 - Sick Sinus Syndrome
- Complications
 - Lead Dislodgement
- NO jugular venipuncture, neck leads/collars, MRI

Tachyarrhythmias

- Tachycardia
 - Wide QRS
 - Narrow QRS
 - Ventricular SVT with aberrancy
 - Sinus Tachycardia
 - Atrial Fibrillation/Flutter
 - Atrial/Junctional SVT

Tachyarrhythmias

- Excessively elevated heart rate interferes with diastolic filling resulting in a drop in stroke volume
 - HR x SV → Cardiac Output → Blood Pressure

Supraventricular Tachycardia
Sinus Tachycardia

- Physiologic Response
 - Pain
 - Anxiety
 - Excitement
 - Hyperthyroidism
 - Cardiac tamponade
 - Congestive heart failure
 - Hypotension
 - Drugs
 - Fever

Supraventricular Tachycardia
Atrial Fibrillation

- Loss of atrial contraction
 - Normally contributes 10-15% total cardiac output
- Tachycardia reduces diastolic filling time while increasing myocardial work and oxygen demand
- Chronic tachycardia results in myocardial failure
- Structural and electrical remodeling
Supraventricular Tachycardia
Atrial Fibrillation

• ECG Characteristics:
 – Irregularly irregular rhythm
 – Narrow QRS complexes
 – Absent P waves
 – Presence of fibrillation waves (F waves)
 • Fine baseline undulations (may not always be apparent)
 – +/- Tachycardia

Supraventricular Tachycardia
Atrial Fibrillation - Treatment

• Rhythm Control - Cardioversion
 – Restoration of sinus rhythm
 – Electrical or pharmacological cardioversion
 – Patients may revert back to atrial fibrillation

• Rate Control
 – Slow the heart rate
 – Improves diastolic filling
 – Target HR: 120-160 bpm

Supraventricular Tachycardia
Atrial Flutter

• ECG Characteristics
 – Rapid regular atrial activation - Flutter waves
 – Narrow QRS complexes
 – May have a regular pattern of atrioventricular block

• More amendable to radiofrequency catheter ablation

• May degenerate to atrial fibrillation

Supraventricular Tachycardia
Other Tachyarrhythmias

• Other Supraventricular Tachyarrhythmias
 – Focal atrial tachycardia
 – Focal junctional tachycardia
 – Permanent junctional reciprocating tachycardia
 – AV nodal reentrant tachycardia
 – Atrioventricular reciprocating tachycardia

Supraventricular Tachycardia
Emergency Treatment

• Diltiazem
 – 0.1-0.25mg/kg IV over 5 minutes
 – 2-6 mcg/kg/min CRI

• Esmolol
 – 0.25-0.5mg/kg IV over 1 minute
 – 50-200 mcg/kg/min CRI

• Lidocaine
 – 2mg/kg IV over 3 minutes
 – Little effect on atrial conduction/refractoriness

• Procainamide
 – 5-8 mg/kg IV over 5 minutes
 – 20-50 mcg/kg/min CRI
 – Depresses conduction in normal and abnormal tissue

Supraventricular Tachycardia
Chronic Therapy

• ABCD for SVT

• Calcium Channel Blockers
 – Diltiazem
 – 0.5 – 3 mg/kg PO TID
 – Esmolol
 – 0.003 mg/kg PO BID (dog), ¼ of 0.125mg tablet EOD (cat)

• Beta-blockers
 – 1-2 mg/kg BID

• Digoxin
 – 0.5 – 1 mg/kg BID

• Sotalol
 – 5-8 mg/kg PO TID

• Amiodarone
 – 10 mg/kg BID then wean to 5mg/kg SID over 2-3 weeks

• Atenolol
 – 0.5 – 1 mg/kg BID
Ventricular Tachycardia When to Treat

- Symptomatic patients
 - Weakness
 - Lethargy
 - Exercise Intolerance
 - Syncope
- Development of tachycardia induced cardiomyopathy
- Risk of sudden death
 - Multiform ventricular arrhythmias
 - Rapid sustained ventricular tachycardia
 - R on T phenomenon

Ventricular Tachycardia Differentials – Non-Cardiac

- Stress/Anxiety (catecholamine induced)
- Abdominal disease
 - Splenic mass, adrenal mass, GDV
- Hypoxemic states
 - GDV, anemia
- Metabolic derangements
 - Acidosis, hypokalemia
- Neoplasia
- Circulating cytokines
- SIRS/Major illness or trauma
 - Circulating cytokines
- Idiopathic

Ventricular Tachycardia Differentials - Cardiac

- Structural Cardiac Disease
 - Cardiomyopathies
 - Dogs: DCM, ARVC
 - Cats: HCM, RCM/UCM, DCM, ARVC
 - Advanced DVD
 - Cardiac tumors
 - Congenital disease/Inherited arrhythmia
- Drugs
 - Antiarrhythmics
- Myocarditis
 - Tick borne disease, Neospora, Toxoplasmosis, Chagas disease

Ventricular Tachycardia Acute Treatment

- **Lidocaine**
 - 2 mg/kg IV slow bolus
 - 1 ml/20 lbs (2% lidocaine)
 - CRI: 40-80 mcg/kg/min
- **Procainamide**
 - 5-8 mg/kg IV over 3-5 minutes
 - (Up to 16-20 mg/kg)
 - CRI: 25-50 mcg/kg/min
- **Sotalol**
 - 1-2 mg/kg PO q12h
- **Amiodarone (Nexterone)**
 - 2.5 – 5 mg/kg IV over 10 min followed by 0.8 mg/kg/hr CRI

Ventricular Tachycardia Chronic Treatment

- **Sotalol**
 - 1-4 mg/kg PO q12 hr
- **Mexiletine**
 - 4-8 mg/kg PO q8-12 hr
- **Atenolol**
 - 0.5-1.0 mg/kg PO q12hr
- **Amiodarone**
 - 10-15mg/kg PO q12h x 1 week, then 5-7.5mg/kg PO q12h x 2 weeks then 5-7.5mg/kg PO q24h thereafter