Tick Borne Diseases of the Horse

Craig F. Shoemaker DVM, MS
Boehringer Ingelheim Animal Health
Equine Professional Services

Disclosures

Employed by Boehringer Ingelheim Animal Health

Lyme Disease in Horses

- Fast growing vector-borne infectious disease in the U.S.
- 25X increase in annual reported cases since 1982 surveillance
- ~30,000 cases per year reported to CDC
 - Only a fraction reported
- CDC studies
 - Large Commercial Laboratories in U.S. (2008)
 - 288,000 (240,000-444,000)
 - Incidence of Clinician Diagnosed Lyme (2005-2010)
 - 320,000 (296,000-376,000)
 - Suggest ~300,000 cases diagnosed per year

CDC Facts on Lyme in Humans

- Fasting growing vector-borne infectious disease in the U.S.
- 25X increase in annual reported cases since 1982 surveillance
- ~30,000 cases per year reported to CDC
 - Only a fraction reported
- CDC studies
 - Large Commercial Laboratories in U.S. (2008)
 - 288,000 (240,000-444,000)
 - Incidence of Clinician Diagnosed Lyme (2005-2010)
 - 320,000 (296,000-376,000)
 - Suggest ~300,000 cases diagnosed per year
CDC Statistics

- 95% of confirmed cases were reported from 14 states (2015)

<table>
<thead>
<tr>
<th>Connecticut</th>
<th>New Jersey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware</td>
<td>New York</td>
</tr>
<tr>
<td>Maine</td>
<td>Pennsylvania</td>
</tr>
<tr>
<td>Maryland</td>
<td>Rhode Island</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Vermont</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Virginia</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Wisconsin</td>
</tr>
</tbody>
</table>

Lyme Disease History

- First described in 1975 in 51 human patients Lyme, Old Lyme and East Haddam, CT
- Multiple joint arthritis
- 1982 Willy Burgdorfer PhD student identified organism – Borrelia burgdorferi
- Found within deer tick (Ixodes scapularis) on Long Island, NY
- Slender, spirally undulating bacteria (spirochete).
- 1984 first reported lyme arthritis in dog

Life cycle

- Ixodes scapularis/Ixodes pacificus (deer tick/black legged tick)
 - Requires 3 different hosts to complete life cycle (egg to adult)
 - Each feeding stage requires blood meal
 - Adult female lays the egg→larva
 - Larval stage→nymph
 - Nymph stage→adult
 - Each stage is capable of causing infection
- B. burgdorferi in hindgut
- Must be attached 24-48 hrs.
- B. burgdorferi, B. mayonii, B. miyamotoi
Clinical observations/concerns

• Controversial opinions exist about occurrence in horses
• Often non-specific, vague clinical signs
• High seroprevalence in clinically healthy horses
• Inducing disease experimentally?
• Accumulating evidence supports Lyme diagnosis in horses

Clinical signs

• Behavioral and lameness
 – Shifting/multiple limb lameness
• Poor performance
• Swollen joints/Arthritis
• Hyperesthesia
• Uveitis
• Pseudolymphoma
• Neuroborreliosis
 – Gait abnormalities, ataxia, depression, head tilt, CN deficits, neck stiffness, encephalitis
 – Lymphocytic pleocytosis in CSF and Ab’s to B. burgdorferi

Diagnostics

• Potential for infection
 – Horse lives or was in endemic area
 – Clinical signs of disease
 – Absence of other disease
 – Positive screening/confirmatory test
• ELISA/IFA
• Western blot
• C6 ELISA
• Multiplex

Diagnostics

• ELISA or IFA- IgG measurement
• High titer
 – Exposed
 – Infected and sick
 – Recently cleared infection
• Low titer
 – Not infected
 – Cleared infection
 – Hasn’t mounted immune response yet
• Cross reactivity with other spirochetal organisms
• Titers do not equate to clinical signs or degree

Diagnostics

• Western blot
 – Designed as confirmatory test for IFA; more specific
 – Detects many antigenic patterns of B. burgdorferi
 – No cross reactivity
 – Indicate common vaccine responses
 – Serial samples useful in following infection
 – Serum, CSF, synovial fluid
 – Limitations:
 • Subjective
 • Reference laboratory only
 • Expensive
• C6 ELISA: 3Dx, 4Dx, Quantitative C6
 • C6 (IR6) Invariable region of the VslE protein
 • C6 gene expressed in mammalian tissues
 • Specific for infection (live organism)
 • Avoids vaccination confusion
 • Consistent with WB 3wks post infection (100%)
 • High agreement between Ab’s of C6 and OspF as markers for infection
 • Effective monitoring infection
 • Ab decrease indicates reduction of parasite load/viability

Diagnostics

- Multiplex assay
 - Cornell AHDC 2011
 - Fluorescent bead technology
 - High sensitivity and specificity
 - Limited labor/quick turn around

Treatment

- Doxycycline
 - 10mg/kg bwt q12hrs. per os
 - G. I. disturbances in rare cases
- Minoxycline
 - 4mg/kg bwt q12hrs. per os
- Oxytetracycline
 - 6.6-11mg/kg bwt q24hrs i.v.
 - Dehydration/pre-existing renal dysfunction
- Ceftiofur
 - 2-4mg/kg bwt q12hrs i.v. or i.m.

Prevention

- Tick control
 - Limit possible exposure
 - Vegetation control
 - Careful examination and removal of ticks
 - Acaricides (dog wipes)
 - Limit mouse population
 - float with pyrethrin

- Vaccination
 - No current vaccine available for the horse
 - Dog vaccine has been used

Diagnostics

- Multiplex assay
- Osp A: vaccination? Can be transiently positive w/nat. infect.
- Osp C: early infection (~3wks.); decline by 7-11wks., undetectable by 4-5mos.
- Osp F: late/chronic infection (5-8wks.); remains elevated.
 Osp F+ Osp C- infected for at least 5mos.
- Assessment of treatment-6wks. post

Diagnostics

- PCR
 - B. burgdorferi rarely present in blood
 - Useful in testing
 - Urt, synovial fluid, CSF
 - Synovial tissue biopsies
 - Renal/other biopsies
 - Necropsy specimens

Prevention

- Tick control
 - Limit possible exposure
 - Vegetation control
 - Careful examination and removal of ticks
 - Acaricides (dog wipes)
 - Limit mouse population
 - float with pyrethrin

- Vaccination
 - No current vaccine available for the horse
 - Dog vaccine has been used
Canine vaccines

- 2 Killed, adjuvanted, whole cell, bivalent bacterins (Osp A & C)
 - Duramune® Lyme (Elanco)
 - Novibac® Lyme (Merck)
- 1 Recombinant, non-adjuvanted, plasma derived, sub-unit vaccine (Osp A)
 - Recombitek® Lyme (BI)

Field samples from vaccinated horses (n=65)
- Evaluated Osp A, C, and F immune responses
- Similar Osp A responses
- <65% had MFI >2,000 1-3 mos. post vaccination
- Virtually gone by 7-9 mos.

Three vaccine experiments

Experiment #1
- Responses to 3 canine vaccines
 - Naïve Icelandic horses
 - Vaccinated Days 0, 25, and 108
 - Osp A values low for all vaccines; <2000 MFI by 16 weeks
 - Osp C elevated with 1 killed, whole cell bacterin

Experiment #2
- Vaccine dose
 - Previously non-vaccinated
 - Whole cell (Osp A/C): 2ml vs. 1ml
 - Osp A and C responses: p<0.01 and p<0.0001
 - Rapid decline regardless of dose

Experiment #3
- Response of prevaccinated horses
 - 2 doses of Recombitek
 - Earlier onset of Osp A and increased Ab longevity (>18 weeks)
 - By 24 weeks all <2,000 MFI
• Experiment #4
 – Route of vaccination
 • SC or IM route
 • Short lived Osp A response (16wks.) regardless of route of administration

• Take home’s:
 • Vaccination has potential to protect horses from infection
 • Osp A Ab’s correlate with protection in many species (Fikrig E, Barthold SW, Kantor FS, Flavell RA. J Infect Dis. 1991 Dec; 164(6):1224-7.)
 • Maybe important tool in endemic locations
 • Transient and inconsistent results in horses
 • Increasing dose and booster frequency may be beneficial
 • Lyme nephritis

Equine Granulocytic Anaplasmosis

• Anaplasma phagocytophilum
• Gram negative bacterium
 – Formerly known as Ehrlichia equi.
 – Tick borne (Ixodes spp.)
• Infectious, non-contagious, seasonal disease
 – Originally observed in no. California
 – Recognized in many states
 – Seen in Europe, Africa, and South America
• Effects wide range of hosts
 – Horses, burros, llamas, rodents
• Human granulocytic anaplasmosis (HGE)
 – Similar strain as horses

Clinical signs

• Fever
• Anorexia, depression, reluctance to move
• Limb edema
• Icterus, petechiation
• Ataxia
• Clinical signs more severe in adults than in horses <4 y.o.
 – Younger horses <1 often only experience fever

Anaplasma phagocytophilum

• Clinicopathologic changes
 – Leukopenia (neutropenia)
 – Thrombocytopenia
 • Mechanism?
 – Hyperfibrinogenemia
 – Mild anemia
 – Intra-cytoplasmic granular inclusion bodies (morulae)
 • Cocobacillary organisms within membrane bound vacuoles
 • Present in neutrophils and eosinophils
 • Giemsa or Wrights stain
Transmission

- Infection through exposure to Ixodes sp
 - Ixodes scapularis and Ixodes pacificus
- Can be transmitted experimentally
 - Whole blood from infected horses/people with HGA
- Incubation period is 1-3 weeks
- Zoonotic risk of infection to people via horses has not been observed; although infection in both appear to be with strains of the same agent

Diagnosis

- Demonstration of cytoplasmic inclusion bodies
 - Few first 48hrs.
 - Increase to 30-40% neutrophils by 3-5 days
- PCR on whole blood
- Paired serology
- SNAP 4Dx
- Differential diagnoses include:
 - Viral encephalitis
 - Primary liver disease
 - EIA
 - Purpura hemorrhagica
 - EVA

Treatment

- Oxytetracycline 7 mg/kg q24 for 8 days
- Penicillin, chloramphenicol, streptomycin no inhibitory effect
- Banamine
- Short term corticosteroid treatment severely ataxic
 - Dexamethasone, 20mg/day, for 2-3 days
- Supportive wraps/stall rest
- Shorter duration treatment may see relapse
- Resolution without therapy
- Solid immunity (>2yrs.) upon recovery

Control

- Tick control measures are mandatory for control of disease.
- No vaccine currently available

Equine Piroplasmosis

- Obligate intra-erythrocytic protozoan parasites
 - Theileria equi (formerly Babesia equi)
 - Babesia caballi
- Can also affect donkeys, mules, zebras
 - Clinical disease rare
- Reportable disease
Equine Piroplasmosis

• Transmission
 – Ticks and biting insects
 – Iatrogenic

• Incubation period
 – 10-30 days B. caballi
 – 12-19 days T. equi

• Persistently infected, inapparent carriers
 – Sequestration of organism and immune evasion
 – Capillaries, CNS vasculature, bone marrow?
 – T. equi infection lifelong?
 – B. caballi may persist for years/lifetime
 – Accounts of self clearance of organism

• Life cycle of B. caballi and T. equi

Equine Piroplasmosis

• Ticks are the definitive hosts and vector
 – Must undergo sexual development within the tick

• Relatively few species of ticks can support

• Competent tick vectors in the U.S. include:
 ➢ Theileria equi
 • Amblyomma mixtum (Cayenne tick, formerly known as A. cajennese)
 • Dermacentor variabilis (American dog tick)
 ➢ Babesia caballi
 • Dermacentor nitens (Tropical horse tick)
 • Dermacentor albipictus (Winter tick)

Epidemiology

• Widespread in tropical and subtropical areas
 – Endemic in Africa, Central and South America, Caribbean, Middle East, Asia, Mediterranean

• T. equi tends to be higher prevalence
 – No cross immunity
 – Mixed infections may occur

• First documented U.S. case in FL. 1961
• Increased surveillance led to disease free status 1988
• Several outbreaks have put status in jeopardy over the years

Clinical signs

• Clinical disease can manifest in different forms

• Acute signs can be non-specific
 – High fevers (104°F)
 – Lethargy, anorexia, weight loss
 – Peripheral edema
 – Petechiations due to thrombocytopenia
 – Hemolytic anemia
 • Fever, tachycardia, tachypnea, weakness, pigmenturia (hemoglobinuria/bilirubinuria)
 – GI complications (colic, impactions, diarrhea)
 – Pneumonia, pulmonary edema, cardiac arrhythmias
 – CNS signs: ataxia, myalgia, seizures
 – Laminitis

• Fulminant (peracute)
 – Collapse and sudden death with overwhelming T. equi infections
 • Intro of naïve horses into endemic area of France resulted in 99% fatality rate
 – Neonatal foals infected in-utero can exhibit clinical signs at birth or 2-3 days of age
 • Weakness, decreased suckling, progress to adult signs
 – B. caballi-foal and neonatal infections reported but rare

• Chronic infection non-specific signs

• Commonly inapparent carriers
 – Reservoirs for transmission
 • Biggest concern for non-endemic countries

Clinical signs
Diagnosis

- Hemolytic anemia, thrombocytopenia, leukocytosis
- Giemsa stained blood smear
- Serology
 - Competitive ELISA: official U.S. test
 - Indirect fluorescent antibody: also accepted by OIE
- PCR
 - Nested and real-time
 - Research only

Treatment

- Imidocarb dipropionate
 - Mode of action uncertain
 - 4.4 mg/kg IM q72hrs for 4 treatments will clear B. caballi
 - T. equi more refractory to treatment
 - Dose dependent hepatotoxicity and nephrotoxicity
 - Colic, diarrhea, sweating
 - Buscopan, glycopyrolate, atropine prevent
- Oxytetracycline
 - 4-6 mg/kg IV for 7 days
 - Effective against T. equi but not B. caballi
- Ponazuril inhibits T. equi in vitro
 - No in-vivo work to date
- Fluids, NSAID's, blood transfusions

Prevention

- Impossible in endemic countries
- Non-endemic countries- regulation of equine movement
- OIE regulatory efforts successful
 - Isolated cases continue to occur in non-endemic locations
 - Rarely associated with tick transmission
 - Iatrogenic—blood contaminated equipment and practices involving needle sharing, blood doping/ transfusions, improperly sterilized surgical, dental, and tattoo equipment

Seroprevalence of Piro in the U.S.
USDA-APHIS 2009

- 15,300 samples were tested
 - 35 EIA sample labs in 34 states submitted samples
- Seroprevalence for B. caballi was 54 horses per 100,000 (0.054%)
- Seroprevalence for T. equi was 7 horses per 100,000 (0.007%)

Piroplasmosis in Florida-2008

- 7 year y.o. QH presented to UF
 - Lethargy, edema, icterus
 - Theileria equi identified
- Subsequent investigation of 210 horses on 25 premises
 - 20 T. equi positives found on 7 premises
 - 7 had clinical signs consistent with EP
 - No B. caballi positives
- Dermacentor variabilis
 - All ticks negative on testing
- Suggestive of iatrogenic spread of T. equi
 - Contaminated needles and blood doping
EP in Texas - 2009

- South TX. Ranch
- Mare presented with clinical signs consistent with EP
 - Positive on cELISA for T. equi
- 292/360 positive on index premises
- Trace out found 117 positives in 15 states
- Tick transmission
 - Competent ticks present:
 - Amblyomma mixtum
 - Dermacentor variabilis
- Many states test horses from TX

Options for EP Positive Horses

- Permanent quarantine
- Euthanasia
- Export from country
- Long term quarantine with enrollment in USDA treatment research program (introduced Feb. 2013)
 - Dr. Don Knowles, WSU

USDA Treatment and Research Program

- Introduced in 2013
- Gives T. equi positive horses a chance for release from quarantine
 - Must complete treatment protocol
 - Must be shown to be clear of organism by series of methods over time
 - Test negative on all diagnostics
- Of 262 horses that have tested positive since 2009
 - 162 died or euthanized
 - 18 exported
 - 55 enrolled in USDA program
 - 26 have been released
- Texas outbreak
 - 163 enrolled
 - 140 have met all negative test requirements